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Permanent axes of rotation of a rigid body, with one fixed point, in a 

uniform force field were discovered by Mlodzevskii [d, and Staude [d 
in 1894. The cone of the permanent rotations of a heavy rigid body was 

considered by Rumiantsev [31, who also investigated the stability of 

these motions. 

In the works of Goriachev [4,51 there are given integrals of motion. 

and the forces acting on the body with a fixed point. 

In this work there are determined permanent axes of rotation of a 

rigid body under the action of forces for which the integrals of 

Goriachev exist. 

Equation of motion. The position of a rigid body with a fixed point 

0 will be described by a rectangular coordinate system 0z1x2x3. which 

is attached to the body in such a way that the coordinate axes coincide 

with the principal axes of inertia of the body about the fixed point 

relative to a rectangular coordinate system O@l<, which is fixed in 

space. The position of the xi-axis in the fixed system will be deter- 

mined by nine cosines ai, pi, yi (i = 1. 2, 3) which are connected by 

the relations 

where each subscript must not exceed 3; this can be accomplished by 

taking the subscript modulus 3, i.e. subtracting 3 if they exceed 3. 
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The equations for the direction cosines of the moving axes are 

da, I dt = ai+lPi+z - ai+zPi+l (0.1) 

Here pi is the projection of the angular velocity of the rotating 

body upon the moving axes. The nine equations (0.1) are supplemented by 
three dynamic equations of Ruler: 

Aidpi I dt = (A,+1 - Ai+J P~+IP~+Z f Li (0.2) 

Here Li is the moment of the external forces about the axis xi; Ai 
is the principal moment of inertia about the same axis. 

If the external forces depend only on the position of the rigid body, 

and if they furthermore, admit a force function U, then the quantities 

Li can be expressed in terms of II in the following way: 

Li = f tai) + f (83 + f (Ti)v j (Xi) = Xi+2 al7 / aXi+ - xi+1 au I axi+g (“‘3) 

1. Attraction of several points of a rigid body by a fixed plane. 

The fourth algebraic integral of the equations (0.1) and (0.2) exists 

[51 if the moments of inertia A, = A2 = 2A3 and the external forces 

admit the existence of a force function 

U = Al [a (n - l)-‘~,‘-~ + ‘/zb (ya2 - r12) - clrl - c,~,] (n = 3) (1-l) 

Here, we shall assume that a > b > 0, ck > 0, and n is a positive 

integer. If in (1.1) we set a = b = 0, then we obtain the case con- 

sidered by S.V. Kovalevskaia: a constant force is acting along the i- 

axis on a point which lies in the equatorial plane of the body’s 

ellipsoid of inertia. If a and b differ from zero, we have a general- 

ization of the case of Kovalevskaia in the sense that external forces 

have been added. The term which contains n reveals the action of the 

force applied to a point on the x3 -axis and acting in the direction of 

the c-axis: the magnitude of this force is inversely proportional to n. 

the degree of the distance of the point of application from the fixed 

plane crl. The term that contains b corresponds to the forces RI and R, 

which are parallel to the <-axis; the force RI is applied to a point on 

the xl-axis. and the force R, to a point of the x2-axis. The distances 

of these points from the fixed crl-plane are dl and d2, respectively. 

Hence, R, = - md,, k* = md, where m is a constant. 

Let us examine under what conditions the considered body will have a 

fixed (permanent) axis of rotation. It is known that if the axis of 

rotation is fixed in space, then it is also fixed in the body. Hence, 

denoting the angular velocity by o, the cosines of the angles between 

the fixed axis and the axes of inertia of the body by l;, we see that 
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pi = lie. The cosines li are independent of time, and satisfy the con- 

dition 

11” + 122 + 132 = 1 (1.2) 

Computing the external moments by means of formulas (6.3), we obtain 
the equations of motion of the rigid body 

l,do I dt = l/al~lsoz -I bh-r, -I aTsTs-n - car3 

&do I dt = - ~l~1,1302 $ byIT - a?lT3-n i- clr3 
(1.3) 

I/% ladm I dt = ~2~1 - cl-r, - Sby,‘r._m dTi I dt = 0 (li+sTi+l - li+lTi+J (1.4) 

Equations (1.3) yield the integrals of the area and of the kinetic 

energy 

(l,+f, + &A72 + 92 l,r,) 0 = 4 (1.5) 

(lIa f ls2 + l/z 132) CI? = 2 [a (n - I)-l~s~-” -I- ‘/z b (+f2’ - rIa) - C,T, - czra + h] = 2n 

By eliminating the angular velocity from these equations, we derive 

l,n + 1,~ + Vz 13~3 = k, (2n)-“’ 1/h” + 1,’ -I- ‘/a 13a (1.6) 

Equations (1.4) have the solution 

T12 + Tz.3 + TsZ = 1, 4~1 + h-r, -F 13~3 = h (1.7) 

1) If the relation (1.6) is not a consequence of the second equation 

in (1.7) then the system of equations (1.6) and (1.7) can be used for 

the determination of the yi. If this system is solvable for the yi, 

then these quantities will be expressed in 

terms of kl, k2, 1 i, a, b, ck and h, and they 

will, therefore, be constants. But then equa- 

tions (1.4) will yield 

71 I 1, = Ta I 1, = Ts I 13 (W 

From this, and from (1.3) and (1.7). it now 

follows that 

1, = Tl, 13 = -t-z. 13 = r3 (1.9) 

i.e. the permanent axis will be the <-axis. 

The angular velocity, which can be determined 

by means of the integrals of the kinetic energy, 
will hereby also be constant. The equations that 
determine the permanent axes in the rigid body will have the form 
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I(- 1y b - ‘i2 coy li+l ii+% - ‘kzZ3_i Es+ + c3_i E, = 0 

(i = 1, 2) 

czl, - cllz - 2bl,l, = 0 

(1.10) 

(1.11) 

Elimination of o2 from the equations in (1.10) leads to equation 

(1.11). This equation determines in the OL,l,E, space a hyperbolic 

cylinder with generators parallel to 013 and passing through a rectangu- 

lar hyperbola, which lies (see figure) in the plane Zli2, and whose 

vertex is at the point 0’ (-c,/2b, c2/2b); its semi-axis is equal to 

l/b 4 ( c&2). and the real axis is Parallel to the bisector of the 
second and fourth quadrants. 

The values of the direction cosines Ei satisfy, in addition, condi- 

tion (1.2). Hence, if one draws a unit sphere with center at the fixed 

point, then the locus of the points of intersection of the hyperbolic 

cylinder (1.11) with this sphere will consist of two closed branches of 

some curve (lying on the sphere) to each point of which there corre- _ 
sponds one of the permanent axes, and, conversely. to every permanent 

axis there corresponds one point of this curve on the sphere. One of 

the branches of the cylinder (I.11) will pass through the Z3-axis. 

Therefore, one branch of the curve on the sphere will always exist. It 

passes along the cylinder and sphere (see figure) through the Points 

AI(0, 0, 1) and AZ(D. 0, -1). The second branch of the curve on the 
sphere can exist when the coordinates of the point P(xl, “2, 0) nearest 

to the origin satisfy the condition “I 2 + x22 <l, where the values of 

xi are found from equation (1.11) and from the condition that the normal 

to the hyperbola (1.11) 

should pass through the origin of the coordinate system. This is equi- 

valent to requiring that 

It should be mentioned that only those axes can be permanent axes 

for which equations (1.10) yield a positive value for w’. Following 

Staude. we shall call all such lines, and also all the points of the 

curve on the sphere that correspond to these lines, admissible’lines or 

points for this problem; all other lines and points will be called in- 

admissible lines or points, respectively. 

In the given case, the admissible points will be the points of the 

curve on the sphere, the coordinates of which satisfy the conditions 
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ci 1 li >, al,-“-1 -+ (- I)$ b (i = 1, 2) 

Let us consider the cylindrical surfaces 

c 1 n+1 
ii = i 3 

a + (-l)ibls”fl 
(i = I, 2j 

(1.13) 

(1.14j 

If n is odd, then the surfaces (1.14) cut the first curve on the 
sphere (see figure) at the points s, and S2 which are located sym- 
metrically with respect to the plane Z1Z2. All points on the axes A1S2 

and A$, will be admissible points. If n is even, then the surfaces 

(1.4) will cut the first curve on the sphere at the points S, and S2’. 

All points lying on the arcs AISl and AILS?’ will satisfy conditions 

(1.13). 

There will be no admissible points on the second curve on the sphere. 

2) If equations (1.6) are implied by (l.?), then yi and GI need not 

be constants. In this case the permanent axes will be of a type differ- 

ent from those considered above. The equivalence of (1.6) to (1.7) 

implies that the coefficients of the yi in these equations are pro- 

portional, i.e. 

Equations (1.15) will be satisfied when /y = 1, kl = k, = 1, = 

1 2 = 0. Then the area integrals imply that y?, = 0. These properties are 

possessed by a rigid body which rotates around an x3-axis which lies in 

the plane that attracts the body. Without loss of generality, we may 

line up x3 with <. In the plane .z1z2 which is orthogonal to the axis of 

rotation there lie three forces with constant directions; one of these 

forces is of constant magnitude (the force of gravity), while the abso- 

lute values of the remaining forces are proportional to the distances 

of the points of their application from the q-axis. We thus have a 

physical pendulum with two auxiliary forces. Another possibility for 

the validity of (1.15) is that 1, = Z2 and Z3 = 0. But if two moments 

of inertia are equal, we may change the directions of the axes so that 
,Y”P nC .L0 nr\ni..on .I.-+ n,Xrrno”-..An to the 0n..al orrnn “I,_ “I “US cl”oI,,ro ti,,o* C.“I I r.YiJY”‘,UO rqual Of&GO becoixes zero. 

Hence, without loss of generality, we may set I1 = 1, Z2 = Zy = 0. Re- 

sides that, the conditions k, = kl = 0 must also be fulfilled. From the 

area integral it then follows that yl = 0, i.e. the Oc-axis lies in the 

plane x1z2. This corresponds to a rotation of the body around the rl- 

axis which lies in the plane that attracts the body (on the E-axis) 
under the action of three forces of constant direction; one of these 
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forces is constant in absolute value, while the absolute values of the 

remaining forces are equal to m161-n and m.$S2, where the mi are con- 
stants, while the 6i are the distances of the points of application of 

the forces from the q-axis. This case also is analogous to a physical 

pendulum with two new forces. 

2. Attraction of a point on the axis of symmetry of the body by a 

fixed plane. Goriachev fd has obtained a new algebraic integral for 

the motion of a rigid body for which A, = AZ, and the external forces 

admit a force function 

u = UA, (?a - 1)-Q,- (2.1) 

where a is a positive constant, and n = 3. me shall consider the case 

when n has any value. Function (2.1) implies the presence of a force. 

applied to a point of the x3-axis, and directed along the G-axis, while 

its magnitude is inversely proportional to n, the degree of the dis- 

tance of the point of application of the force from the <q-plane. The 

dynamical equations of motion (0.2) have the form 

(-l)$ dw / dt = (e - I) Zi+l fi+2 - cy,_,~,-” fi = 1, 2), &do 1 dt = 0 

(IZ=&!A1) (2.2) 

which must be supplemented by equations (1.4). Equations (2.2) imply 
that a permanent axis with a variable angular velocity must be a straight 

line which lies in the equatorial plane of the ellipsoid of inertia 

f3 = 0. From this we conclude that 1 lyl + E,y2 = 0. Without loss of 

generality, we may set 1 2 = 0. Then I, must be zero. This corresponds 

to a rotation of the body around the xl-axis, which coincides with the 

c-axis, the action force is hereby located in the x2x3-plane. 

The permanent axes with constant angular velocities are determined 

by the equations 

n-1 = 
2a 

Ts 
(n- 1) [h - (113 + 133 + eL3‘q] ' 

her3 - 1.27, = 0 

The first one of these is the integral of the kinetic energy; the 

second one is a consequence of (2.2). From (1.4) and (2.3) it follows 

that the permanent axis coincides with the j-axis. i.e. equation (1.9) 

is satisfied. The admissible points on the sphere (1.2) are determined 

by the relation 

a= = 
a -->o 

(E - 1) Ian+’ 

which will be satisfied when n is even, on the hemisphere Z3 < 0 if 

E < 1, and on the hemisphere Z3 > 0 if E > 1; when n is odd, it will be 
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satisfied on both hemispheres if E > 1, and not be satisfied at all if 
E < 1. 

3. Action of a force which is constant with respect to the body. The 

integral pg = const will exist also (in addition to considered cases) 
when the symmetric body A1 = A2 is subjected to the action of a force 

FAl constant in magnitude, parallel to the x3-axis, and applied to an 

arbitrary point xi0 of the body. The dynamic equations 

(-l)i lido / dt = (E - 1) ti+lZi+,02 - Fx,_~,, I, do / dt = 0 (E = A3 /A,) (3.1) 

show that the permanent axes with variable angular velocity exist if 

I, = 1,x,, + 1,x,0 = 0 (3.2) 

i.e. the permanent axis is orthogonal to the straight line which passes 

through the point of application of the force and through the origin, 

and lies in the zlr2-plane. The xl-axis has this property. If, however, 

the angular velocity is constant, then equations (3.1) yield 

xl0 I 1, = xso I 1, = k (3.3) 

i.e. the permanent axis lies in the same plane with the straight line 

that passes through the point of application of the force and through 

the origin of the coordinate system. The acting force lies in the same 

plane. The angular velocity in this case is given by 

kF 
oa = I, (e - 1) 

If follows from this that if k > 0, the admissible points of the 

sphere (1.2) will be points of the hemisphere 2, < 0 if E < 1, of the 
hemisphere I, > 0 if E > 1. 

4. Attraction of a body by a fixed plane. Goriachev’ s method for 

finding the integrals of motion yields a positive result also when the 

force function has the form 

u = - a (AlT? -I- AzT‘2 4- A,?-3 (4-Q 

This, with a > 0, corresponds to the attraction of a body by the cq- 

plane with forces that are proportional to the distances of the points 

of the body from the plane. This problem has been investigated by 

de Brun [Sl. In studying the stability of a body in the force field 

(4.1). Beletskii Ed revealed one permanent axis; the constant rotation 

around the inertia axis perpendicular to the attracting plane. We shall 

indicate all possible permanent axes of rotation. If we adjoin to equa- 

tions (1.4) the dynamical equations 

Ail i do / dt = (Ai+l - Ai+J (ti+lli+,aa - 2Wi+,Ti+J (4.2) 
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we obtain the integrals 

(A,Z12 f A& + A&)oa = h - 2~2 (x4nla + A,rsa + A3rz) 

(A,br, t A,&T, f AJ,rdo = k, 

which yield 

1) If (4.3) and (1.7) are independent of each other, then the system 

of equations (1.7) and (4.3) determine yi as constants. But then, just 

as above, we obtain relation (1.9), i.e. every permanent axis must be 

perpenduclar to the attracting plane. From the derived integrals it 
follows that o = constant. Equations (4.2) now take on the form 

(A. HI - Ai+z) (02 - 2~) li+,li+, = 0 (4.4) 

This yields the following results: 

a) When a2 f 2a and A, y A2 f A, (or A1 = Aa f AS) only the principal 

axes of the ellipsoid of inertia can be permanent axes. 

b) If the ellipsoid of inertia degenerates into a sphere A, = A, = A,, 

or if o2 = 2a, then there can be a rotation of the body around a line 

that is perpendicular to the plane; the position of the body relative 

to this line is immaterial. 

2) Equation (4.3) is implied by (1.7) if k1 = k2 = 0. 

Then the quantities yi and o need not be constants. The relation be- 

tween equations (4.3) and (1.7) is the following: 

Condition (4.5) can be 

A,11 A,& A,& -= _=- 
11 1, 13 

met if one equates all three moments of 

inertia, or equates two moments of inertia and sets the cosine that cor- 

responds to the distinct moment, equal to zero, or if one makes two of 

the cosines Ii equal to zero. When there are two or three equal moments 

of inertia, one can change the direction of the axes in such a way that 

one of the cosines corresponding to the equal axes becomes zero. With- 

out loss of generality, we may set ll = 1, 1, = l3 = 0. Then the second 

equation of (1.7) or (4.3) implies that y1 = 0. This corresponds to a 

rotation of the body around one of the axes of inertia (rl) which lies 

in the attracting plane @J. An analogous result has been obtained by 

Beletskii [Sl for the motion of a body in a central force field. 

The author thanks V.V. Rumiantsev for his interest in this work. 
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